IV. INTEGRATION OF TRIGONOMETRIC FUNCTIONS
Integrating the following with respect to x
1.
2.
3.![]()
4.
5.
6. ![]()
7.
8.
9. 
10.
11.
12. ![]()
13.
14.
15. ![]()
16.
17.
Find the following integrals:
18.
19. ![]()
20.
21. ![]()
22.
23. ![]()
24.
25.![]()
26.
27.![]()
28. ![]()
29. (a) Show that
, and hence find ![]()
(b) Show that
, and hence find ![]()
(c) Prove that
, and hence find ![]()
(d) Prove by differentiation that
=
or
. Show that each of the primitive functions differ only by a constant.
30. Find the following integrals by using the substitution method:
(a)
(b)
(c) ![]()
(d)
(e)
(f) ![]()
(g)
(h)
(i) ![]()
(j)
(k)
(l) ![]()
(m)
(n)
(o)![]()
(p)
(q)![]()
31. Determine the value of the following integrals:
(a)
(b)
(c)![]()
(d)
(e)
(f) ![]()
(g)
(h) ![]()
32. (a) Find
hence find
.
(b) Show that
hence find![]()
(c) Show that
hence find ![]()
(d) Differentiate
and
; make use of these results to find
.
(e) Show that
and hence find
.
(f) Show that
, and hence find ![]()
(g) Differentitate
and hence find
.
33. (a) For what values of a does (i)
and
(ii) ![]()
(b) Find (i)
(ii) ![]()
(c) Prove that (i)
(ii) ![]()
(iii)
, hence find the following integrals:
,
,
.
(d) Show that (i) ![]()
(ii) ![]()
(iii) ![]()
(iv) ![]()